

Battery Energy Storage System for Grid Services in Germany and UK

Nir Dekel, sales manager 8th November 2017

Belectric Overview

- One of the world's largest PV system integrator
- In-house R&D and manufacturing
- Over 1.6 GWp total installed capacity
- Experience in all continents and climates

Belectric Overview – Products

Standard PV system block:

- Simplification
- Standardization
- Improved Efficiency

Belectric Overview – Storage

- A standard system in 40ft container with up to 4MWh
- 7 years experience in R&D and product development
- ~75MW power & 55MWh capacity in Commercial operation

Terminology: Power, Capacity & C-Rate

Capacity: The amount of energy stored in the battery [Wh]

Power: The rate of energy drawn from the system [W]
 Capacity (MWh) – The batteries
 Power (MW) – The inverters

 C-rate: The ratio between Power and Capacity, Higher crate → faster energy charge / discharge

C rate	Configuration examples	Application
High power (High c-rate)	2MW & 1MWh: 2C, 30 min charge/discharge 4MW & 1MWh: 4C, 15 minutes charge/discharge	Frequency regulation, typically 30 or 15 minutes (2C or 4C).
High capacity (Low c-rate)	2MW & 4MWh: 0.5C, 2 hours charge/discharge	Ramp-rate, Energy for peak demand

Storage Business Cases Overview

Frequency Control – The Need

- Transmission grid frequency changes based on load vs generation:
 - When Generation > Load → Higher frequency
 - When Generation < Load → Lower frequency</p>
- Grid frequency kept within certain range, (eg 50 ± 0.05 Hz in Germany)
- Frequency services:

Control level	Objective	Response Time	Power required
Primary	Stabilizing the grid	Seconds	Low power
Secondary	Grid back to normal	Minutes	High power

Transmission grid Frequency chart (in blue and green), must be kept at 50 ± 0.05

Batteries can provide Primary services, where fast response is required: Charging when the frequency is low and discharging when it's high.

- 95% of responses to frequency changes are within ±40mHz →
 ±0.3 MW required (only ~20% of German regulation requirement)
 - → 20% of the power addresses 95% of the need
- The faster the reaction the lower the power required

European Regulation

- Grid services is TNO responsibility contracted to generators
- Mix sources of energy (storage and others) is the most efficient for frequency regulation
- Storage to provide high power for a short time (15 minutes)
- Consequently, the energy required to fulfil the 30 min requirement can be distributed among all energy reservoirs which are part of the same FCR Providing Group without any further constraints.

European Regulation - TERNA

- TRENA Italy's electricity transmission grid operators
- Combination of traditional generators and batteries the most cost effective for frequency regulation:

75/25% traditional/storage for frequency regulation is much better than 100% traditional

West Berlin Battery

- West Berlin during the cold war: Small & isolated network
- Batteries as key component to maintain the grid frequency
- The oldest batteries in the world for grid services: Frequency and Voltage regulation and fast available reserve power
- Power: 17 MW over 20 minutes, Capacity: 14.4 MWh

Germany – Overview

- 600MW market size, connected to Europe
- Weekly auction for prequalifies generators, mainly Lignite (brown coal) and inc. batteries
- Payment for <u>reserved</u> power [Euro / MW]

Anbieter	PRL	SRL	MR
ArcelorMittal Eisenhüttenstadt GmbH			
Axpo Deutschland GmbH			
BalancePower GmbH			
BS Energy Braunschweiger Versorgungs-AG & Co.KG			
Caterva GmbH			
citiworks AG			
Clean Energy Markets Access GmbH			
Coulomb GmbH			
CURRENTA GmbH & Co. OHG			
Danske Commodities A/S			
E.ON Global Commodities SE			
EnBW Kraftwerke AG			
Energie SaarLorLux AG			
Energiedienst Holding AG			
Energieversorgung Offenbach AG			
Energieversorgung Schwerin GmbH & Co. Erzeugung KG			
Energy2market GmbH			
ENERSTORAGE GmbH			
ENGIE Deutschland AG			

German – Requirements

Requirements (suitable for conventional generators):

- Up to 30 sec reaction time
- Power required for 30 min
- Power for must be reserved & available at all time

	Primary regulating reserve	Secondary regulating reserve	Tertiary regulating reserve
Deliver Time / Scheduling	Weekly	Weekly	Daily
Payment /allowance	Power price	Power & working price	Power & working price
Detection	Positive & negative	Positive and/or negative	Positive and/or negative
Reaction time	< 30 s	< 5 min	< 15 min

German – Business Model

Prime Frequency Control business model in Germany:

Owning the grid, setting the rules and regulations, pays the PFR Provider for its reserved power based on weekly auction

Energy generator, **providing** prime frequency control **services** through **energy mix including storage**.

Owns storage assets or purchase reserve power from storage system owner. Pays fixed price to the storage **system Owner**, eg 80% of the market (auction) price.

The storage system owner.

Do not participate in the Frequency Control market directly but through the **PFC Provider** for better revenues security.

The company designing, procuring and installing the storage system

Storage cannot be independent generator Germany but only through a PFC provider. This is possible in the UK market where the storage can be an independent player for grid and commercial services.

UK – Overview

- Isolated market (much smaller than Europe)
- High penetration of renewable → Less conventional
 → Less inertia
- → Grid volatile to frequency changes
- Primary grid services mainly by coal & gas plants
- NationalGrid calculation: Saving of 150-200M €
 network operation cost pear year by 2020!

UK – First Stage

- 200MW total battery storage via first tender round in 2016
- 8 projects rewarded (inc. Belectric) commissioned by ~mid 2018
- 4 years fixed price for reserved power (winning bids: 7-12 £/MW)
- Open to both large aggregators & others battery system owners

▼ Provider Name	▼ Site Location/Name ▼	Type of service	Provid ~	Enhanced Response (MV ▼	Average price of tender £/MW of EFR/
1 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	49	7
2 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	48	7,029791667
3 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	47	7,108297872
4 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	46	7,18673913
5 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	45	7,265333333
6 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	44	7,343636364
7 Vattenfall	Pen Y Cymoedd	Service 2 (±0.015 deadband)	Storage	22	7,447727273
8 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	40	7,6575
9 Vattenfall	Pen Y Cymoedd	Service 2 (±0.015 deadband)	Storage	18	7,935
10 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	35	8,05
11 Low Carbon	Cleator	Service 2 (±0.015 deadband)	Storage	10	7,94
12 Vattenfall	Pen Y Cymoedd	Service 2 (±0.015 deadband)	Storage	13	8,273076923
13 Vattenfall	Pen Y Cymoedd	Service 2 (±0.015 deadband)	Storage	9	9,183333333
14 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	30	9,45
15 Low Carbon	Glassenbury	Service 2 (±0.015 deadband)	Storage	40	9,38
16 Low Carbon	Cleator	Service 2 (±0.015 deadband)	Storage	10	10,4
17 EDF Energy Renewables	T_WBURB-4	Service 2 (±0.015 deadband)	Storage	25	10,95
18 E.ON UK	Sheffield, S9 1HF/ Blackburn Meadows	Service 2 (±0.015 deadband)	Storage	10	11,09
19 Element Power	TESS	Service 2 (±0.015 deadband)	Storage	25	11,49
20 Low Carbon	Glassenbury	Service 2 (±0.015 deadband)	Storage	40	11,8
21 DES	DESEED7 DT	Service 2 (±0.015 deadband)	Storage	35	11,03
22 Belectric	Nevendon	Service 2 (±0.015 deadband)	Storage	10	11,97
23 EUF Energy Renewables	I_WBURB-4	Service 2 (±0.015 deadband)	Storage	20	
24 E.ON UK	London, EC1M 69B/ Citigen	Service 2 (±0.015 deadband)	Storage	5	12,32

UK – Requirements

- 1 sec reaction time (= 0.5 detection + 0.5 reaction)
- **Power** required **for 15 min**, suitable for batteries
- Full delivery within ±0.5Hz
- The "static" chart: (frequency vs power):

Reference Point	Service 1
	(Hz)
Α	49.5
В	49.75
С	49.95
D	50.05
E	50.25
F	50.5
Reference Point	Service 1
	(%Capacity)
t	100%
u	44.44444%
V	9%
w	0%
X	-9%
у	-44.44444%
Z	-100%
	1 1

UK – Next Stage

- Frequency deviation at different locations not aligned with time (chart below)
- Next stage: Distributed events → distributed response
- Reaction to change of frequency rather than frequency value
- Combined (Hybrid) response from different providers, i.e. Solar and Batteries

• Use batteries to its full capabilities: Speed, ramp -rate, local

deployment

Other Global Markets

- Others in Europe:
 - Following European regulations (ENTSOE)
 - France, Austria, Swiss, Benelux
- USA:
 - PJM network (north-east grid) payment for capacity and performance (fast response)
 - California : Other applications eg Peak shaving & arbitrage
- Australia:
 - No regulation to support batteries
 - Driven by state governments (auctions in South-Australia and Victoria)
 - Main driver: '16 South Australia blackout

Others Grid Services

- Voltage Regulation at the distribution network
- Transmission / Distribution network deferral: Avoidance of grid upgrades
- Transmission congestion Relief: Assuring sufficient energy to meet customers demands. Eg South-Australia

Frequency Control – Design Spec

- Frequency response chart (the "static" data, frequency vs power chart): Charge & discharge required vs frequency
- Frequency data. The actual grid data / behavior used to design the battery
- Charge / discharge requests from the grid: Response time & the power rate and duration
- → System design: Simulation, Capacity (& c-rate), battery type, warranties terms...

Belectric simulation tool

Simulation output charts: Battery SOW profile throughout the year

The static chart provided by National-Grid / UK: The power required per frequency change

Grid frequency data, Caribbean island

Storage Commercial Viability

Rule of thumb:

- EPC CAPEX costs ~500 Euro/kWh (installed capacity)
- ~6,000 cycles (guaranteed) during system life
- \rightarrow ~0.08 Euro/kWh EPC CAPEX cost (=500/6,000)
- Investors CAPEX costs + OPEX costs: ~0.04 Euro/kWh
- → Total costs ~0.12 Euro/kWh (usable capacity)

Highly recommended lecture:

Clean Disruption - Energy & Transportation, Mr Tony Seba https://www.youtube.com/watch?v=2b3ttqYDwF0

BELECTRIC – The better electric.

Headquarters Germany:

BELECTRIC GmbH, Wadenbrunner Str. 10, 97509 Kolitzheim, Germany

Phone: +49 9385 9804-0, Email: info@belectric.com

