

DRIVESTART

OVERVIEW

Solcon Group overview

200

Employees 3 subsidiaries (Europe, USA and Asia)

40

years in business

Over **100**

International Partners

Over 250,000 Installations WW

Full scope of both MV & LV SST and Motor Protection

GROUP OVERVIEW - GLOBAL OPERATIONS 4

LOW VOLTAGE PRODUCTS - DIGITAL

- ✓ Full Range up to 1100A
- ✓ Internal Bypass
- ✓ Modular Design
- √ 3 & 2 Phase control
- ✓ Multi-language Support

- ✓ Heavy Duty Up to 3000A
- ✓ External Bypass
- ✓ Marine Type Tested

MEDIUM VOLTAGE SOFT STARTERS

- Groundbreaking, IGBT based MV Soft Starter
- Ratings: up to 6.6KV
- Optimized for applications that require low starting current and/or a high starting torque

- MV Soft Starter in Fully Type Tested Switchgear
- Ratings: 2300-15000V, up to 48MW
- Reliable, heavy duty soft starter
- Integrated data Logger

POWER CONTROL PRODUCTS

TPS •

Low voltage Power Control System

MV TPS 🕞

Medium Voltage Power Control System

WHO AM I?

2010 – today - Solcon Industries Ltd. - Vice President Engineering and Projects - Management of all global engineering activities in the company, in Europe as well as in the USA including, managing engineering groups in Europe and USA.

2005-2010 - Solcon Industries Ltd. - Technical support manager - working with clients abroad.

Pre-sale, after-sale & commissioning of low and Medium voltage soft starters and motor protection relays.

1993-2005 - Consulting Engineers "R. Cohen & Assoc.". - Design electrical installations of all types, high voltage installations, low voltage, low voltage, power distribution, special projects.

1983-1988 - Electrician in a Navy vessel.

CLASSIC LV SOFT STARTER

A soft starter controls motor currents by controlling motor's voltage

Low voltage soft starter

CLASSIC MV SOFT STARTER

Medium Voltage soft starter

CLASSIC SOFT STARTER

The firing point of thyristors determines output voltage level

CLASSIC SCR TECHNOLOGY SOFT STARTERS

- Reduced voltage starting where the operating frequency is fixed and equal to the mains frequency
- Softstart with SCR technology controls
 - Current (I) reduced in direct ratio to V
 - Torque (T) reduced in ratio to I²
- For most applications (pumps, compressors...) reducing voltage is a good solution - reducing current, while still having enough torque
- Slip (S) starts at 1.0 and reduces during start process to ≈0.006 for large motors.
- Motor efficiency is lower than 1-S
- Motor efficiency is very low, accompanied by motor heating
- Usually, maximum necessary starting current ≈ 250%-400% of the rated current
- Solcon has manufactured soft starters for rated currents up to 3000A and 13.8kV.

MV MOTOR TORQUE VS. LV MOTOR TORQUE DURING START

Very significant difference between LV and MV motor torque behavior during start

CLASSIC SOFT STARTER

Loads that require **high torque** and therefore cannot allow significant voltage reduction

Applications that require both high starting torque and low starting current

Ex: Marine applications using local generators as a power source

Even mains applications sometimes require low starting current

Starting capacitors are often incorporated in the Input Side of soft starters to reduce the starting current

Certain applications require **speed control** during the starting process

Conveyor belts require "S" profile, long starting process and high torque

High pressure water pumps in desalination plants require monitoring of the rate of pressure change. A value greater than 1 bar per second can damage membranes.

Classic soft starters with tacho generator feedback can be used, but heat developing in the rotor during a long start often requires forced cooling or special more expensive motors.

WHY DRIVESTART?

DRIVESTART TOPOLOGY

DriveStart (DST) Principles

Soft Starter based on IGBT technology

3 Level, 6 Pulse, Neutral Point Clamped (NPC) Inverter

Incoming stage

Mains Voltage is rectified and charges **2** "large" **Capacitors** (a few μF per each Ampere of motor rated current) and creates **double DC BUS**, one positive and one negative.

Inverter

DC voltages supply, 3 branches of transistors, one branch per phase Each Branch includes (for 3300V & 4150V mains) 4 power transistors

The switching elements are Insulated Gate Bipolar Transistor (IGBT)

WHY DRIVESTART

Advantages over SCR starting technology

- Starting at very low current (+/- Nominal current)
- Much higher starting torque available
- Greatly reduced Heating in Motor Rotor
- Nearly unlimited number of starts per hour
- Low Speed operation Inching/Jogging
- Change Rotation Direction without additional external contactor

DRIVESTART VS. STANDARD VFD STARTER

- Synchronised closing of Bypass Contactor at end of acceleration soft start
- Synchronised opening of Bypass for soft stop
- Closed Transition Bypass No spikes or Dips Frequency, Phase and Voltage level
- Minimal Transients after Bypass only few cycles
- Air Cooled cooling system
- Very Low Maintenance schedule (on Bypass IGBT's are not energized)
- Very small part Count
- Uncomplicated design utilizing Fiber optic Control Technology (as in HRVSDN)
- Simple Multistart/stop design philosophy

DriveStart Internal Bypass – Closed Transition

DriveStart Internal Bypass – Closed Transition

Value Proposition

DriveStart vs. VFD with bypass

DriveStart vs. VFD without bypass

Considerable 35-50% 20-35% upfront upfront annual energy **Bypass** savings savings savings SOLCON POWERED SOLCON TO POWERED VFD **VFD**

Incoming reactor – When is it needed?

- Protect the Rectifying Bridge Diodes
- Reduce Harmonics in the mains
- Typical value: 2-3% (of Vph/lph). (3300V/400A): 2.6%=>400μH
- Disconnected at Bypass.

Rectifier – 6 pulse vs. 12 pulse or 24 pulse

- Do we need harmonic mitigation?
- 24 pulse however in this case replacing the incoming transformer may be an issue.

Output Reactor

- Prevent Short circuit between mains and inverter output at closed transition.
- It is part of the dv/dt output filter
- Typical value: Half than Input Inductor
- Disconnected at Bypass.

- Reduces the rate of dv/dt mainly for non "inverter-rated" motors.
- dv/dt<1.5kV/μs
- Disconnected at Bypass.

- Weak network
- High torque start (650 tons of sludge)
- 500m cable length
- 5 motors cost constrained
- Space constrained existing SWGR room.
- construction Time constrained
- Solcon engineering design according to Solcon ProGear type tested medium voltage SWGR integrated with the DriveStart and motor protection relays.

Multi-Start – Design Philosophy – Internal Bypass

Multi-Start – Design Philosophy – Internal Bypass

Front View

THANK YOU!