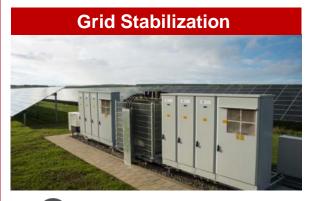


Battery Energy Storage System Business Cases Nir Dekel, sales manager 9th November 2017

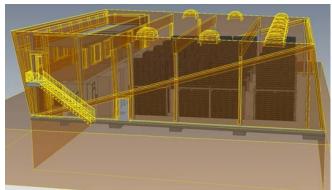
Belectric Overview

- One of the world's largest PV system integrator
- In-house R&D and manufacturing
- Over 1.6 GWp total installed capacity
- Experience in all continents and climates

Belectric Overview – Products


Standard PV system block:

- Simplification
- Standardization
- Improved Efficiency


Belectric Overview – Storage

- A standard system in 40ft container with up to 4MWh
- 7 years experience in R&D and product development
- ~75MW power & 55MWh capacity in Commercial operation

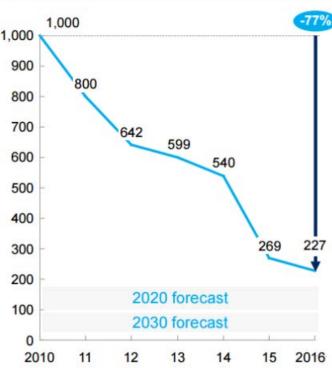
Terminology: Power, Capacity & C-Rate

Capacity: The amount of energy stored in the battery [Wh]

Power: The rate of energy drawn from the storage system
 Capacity (MWh) – The batteries
 Power (MW) – The inverters

 C-rate: The ratio between Power and Capacity, Higher crate → faster energy charge / discharge

	C rate	Configuration examples	Application
	High power (High c-rate)	2MW & 1MWh: 2C, 30 min charge/discharge 4MW & 1MWh: 4C, 15 minutes charge/discharge	Frequency regulation, typically 30 or 15 minutes (2C or 4C).
	High capacity (Low c-rate)	2MW & 4MWh: 0.5C, 2 hours charge/discharge	Ramp-rate, Energy for peak demand



Storage Power Price

Li-on batteries price dropping exponentially!

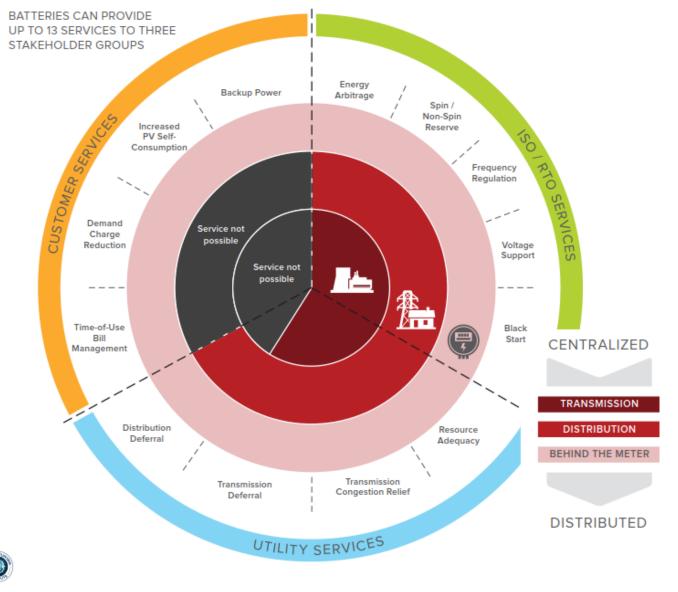
- 1995 2010: 14% per year over 15 years
- 2010 2017: 20% per year, price decrease accelerated due to investment by IT, Automotive and Energy industries
- 2020 forecast: Below \$190/kWh
- 2030 forecast: \$100/kWh or lower... 1,000

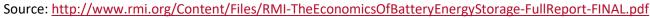
Average battery pack price

\$ per kWh

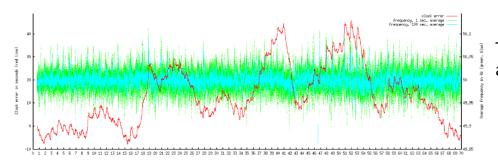
Energy Storage Benefits

Both Generator & Load (discharge & charge)
Extremely Fast Response
Very Cheap





Storage Business Cases Overview



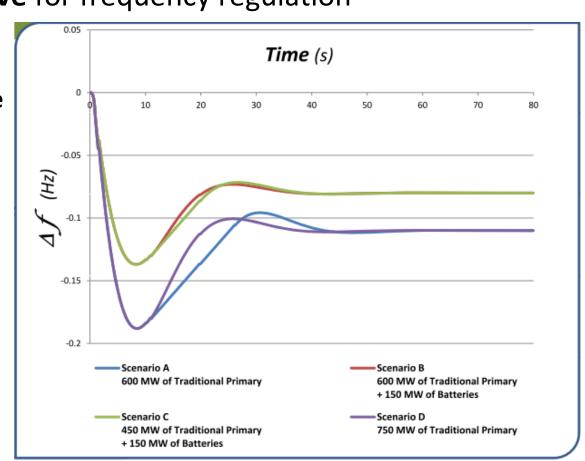
Frequency Control – The Need

- Transmission grid frequency changes based on load vs generation:
 - When Generation > Load → Higher frequency
 - When Generation < Load → Lower frequency</p>
- Grid frequency kept within certain range, (eg 50 ± 0.05 Hz in Germany)
- Frequency services:

Control level	Objective	Response Time	Power required
Primary	Stabilizing the grid	Seconds	Low power
Secondary	Grid back to normal	Minutes	High power

Transmission grid Frequency chart (in blue and green), must be kept at 50 ± 0.05

Batteries can provide Primary services, where fast response is required: Charging when the frequency is low and discharging when it's high.


Frequency Regulation - TERNA

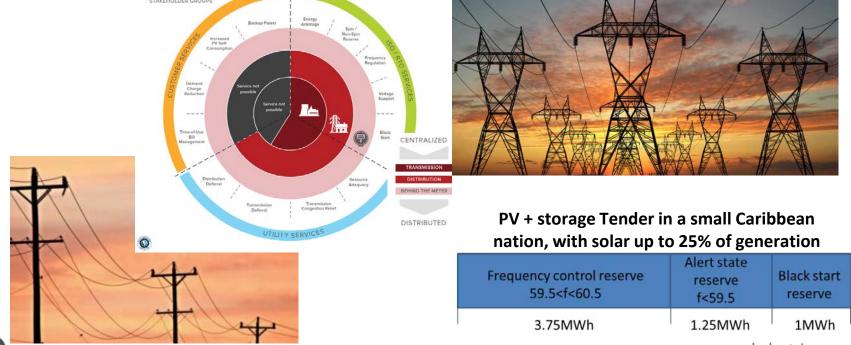
- TRENA: Italy's electricity transmission grid operator
- Combination of traditional generators and batteries the most cost effective for frequency regulation

75/25% traditional/storage for frequency regulation is much better than 100% traditional

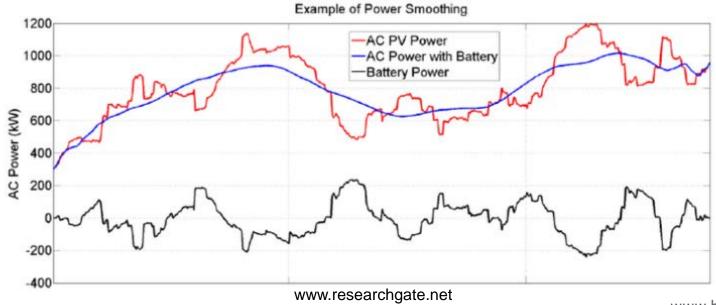


Frequency Regulation - UK

- NationalGrid: UK's electricity transmission grid operator
- Increase of network operation cost by 150-200M € pear year by 2020!



Others Grid Services

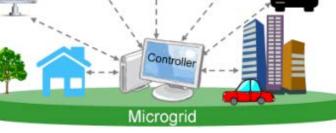

- Voltage Regulation at the distribution network
- Transmission / Distribution network Deferral
- Transmission congestion Relief: Assuring sufficient energy to meet customers demands. Eg South-Australia
- Critical for small grids and grid with a lot of renewables

Ramp Rate Control

- Storage to decrease rapid changes of renewable output, eg cloud event at solar farms
- Storage system charged & discharged to maintain the max ramp rate required
- Kadapa and Pavagada Indian tenders: Max ramp rate as
 ±2% of last 15 minutes moving average of solar output
- 10% storage expected in every solar project in India

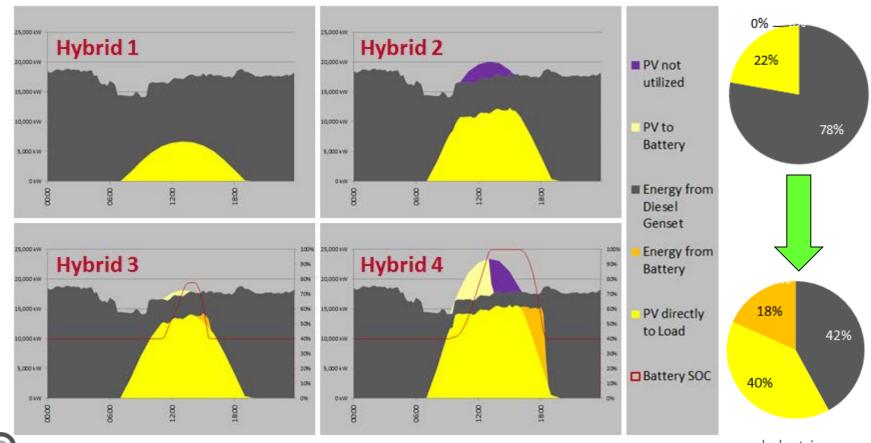
Backup Power for Peak Demand

- Utility scale storage system for peak demand
- Oct 2015: Gas leak at Aliso Canyon's underground storage facility used or peak demand → Facility shutdown due to reliability concerns → Utility scale energy storage as replacement
- Jan '17: 20MW/80MWh energy storage system completed in 88 days



Mini Grids

- Mini Grid ("micro grid"), is electricity supply to local customers with power generators (and storage)
- Potential in Africa, Australia, South-America: 65% of Africa's citizens without access to electricity. 500AU\$ diesel subsidies in West-Australia

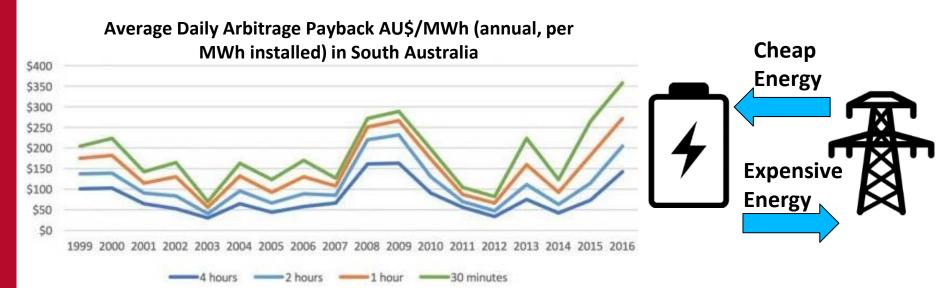

Storage is key component for micro grids to reduce fuel costs and to increase reliability

Increase Solar Penetration with Hybrid

- % of solar power limited to ~20% to allow diesel ramp-up
- Storage can significantly increase solar size & hybrid system
- → Increased saving of diesel fuel & use of excess solar output

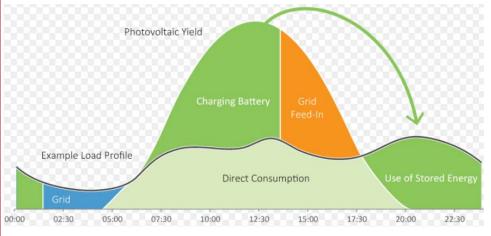
Virtual Power Plant - VPP

- VPP Aggregated distributed energy resources for energy trading and/or ancillary services
- Energy storage-enabled VPPs let a utility add the capacity of a power plant without investing in a new physical plant


Mar 2017, power company AGL implementing the world largest VPP in South Australia: 5MW VPP made of 100s properties with solar and battery storage

Energy Arbitrage

- Revenues due to changes at energy prices
- Risky, makes sense in combination with other applications
- Implemented in the UK, 2 projects combining frequency services and arbitrage business cases
- Evaluated as part of South-Australia tender
- Requires high power system, to benefit from short duration of price peaks & low

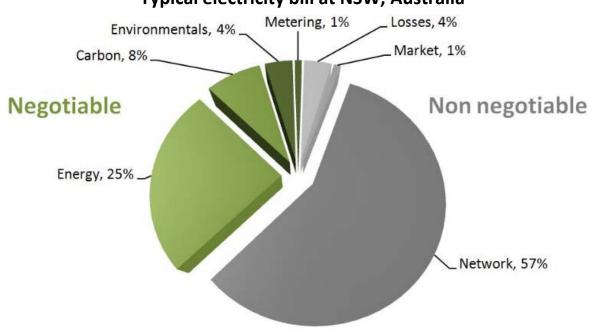


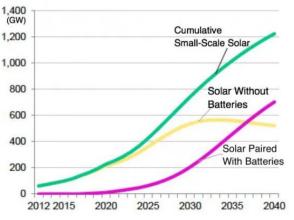
Increased Renewable Self Consumption

- Avoiding losses due to renewable energy curtailment at utility applications or generation-demand not aligned at residential & commercial applications.
- South Australia: 100MW/129 MWh battery at 309 MW wind farm,
 mainly to reduce losses of wind energy and to provide grid services

Excess solar energy used later through battery

Concept image for the South Australian project




Residential Solar

- Grid costs are ~60% of electricity bill in Australia → Driving consumers to go off grid! enabled by energy storage
- BNEF: "Over the next 25 years, small-scale battery storage will become a \$250 billion market" (worldwide)

Typical electricity bill at NSW, Australia

Storage will become standard with rooftop solar by 2030

BNEF, 31 Jan 2017

Environmentals Carbon Metering Losses ■ Market

Storage Commercial Viability

Rule of thumb:

- EPC CAPEX costs ~500 Euro/kWh (installed capacity)
- ~6,000 cycles (guaranteed) during system life
- → ~0.08 Euro/kWh EPC CAPEX cost (=500/6,000)
- Investors CAPEX costs + OPEX costs: ~0.04 Euro/kWh
- Total costs ~0.12 Euro/kWh (usable capacity)

Highly recommended lecture:

Clean Disruption - Energy & Transportation, Mr Tony Seba https://www.youtube.com/watch?v=2b3ttqYDwF0

BELECTRIC – The better electric.

Headquarters Germany:

BELECTRIC GmbH, Wadenbrunner Str. 10, 97509 Kolitzheim, Germany

Phone: +49 9385 9804-0, Email: info@belectric.com

