Smart Metering for renewable energies – 1) requirements, 2) capabilities 3) and correct use

Netzah Calamaro – IEC Prof. Doron Shmilovitz – TAU

Renewable energy panel

√ To show modern grid capabilities especially renewable

✓ To show the <u>smart meter capabilities</u>

- ✓ To show the grid requirements from metering systems
- √ To map renewable requirement to meter capability

√ To explain the <u>new</u> measurement problems of these new requirements and provide a simple solution

√ To demonstrate to renewable engineers what can smart metering provide them and how can it save you money and increase their profits

✓ To explain how common metrology standards do not cover the new requirements and introduce new standards that does, and new verification that does cover them

P₅₀

√ To explain some methods of <u>correct field</u> energy and power quality <u>measurement</u>

The grid is changing – how?

Transformation of the Power System – New Resources, Communication, and Control at all Levels

New Opportunities and Challenges Require Integrated Approaches with New Methods, Tools, and Collaborations

- ✓ Bi-directional energy flow: consumers are also producers
 - renewable energy generation
- **✓ Remote** meter reading, smart meter

The grid is changing – how?

Distributed energy generation

What can smart metering provide renewables #1st solution

Load and price forecasting 30 days ahead

The grid is changing – how?

The meter has changed: a smart meter

Smart meter capabilities:

- ✓ Remote meter reading
- √ 15min load profile periodic energy consumption
- ✓ Electricity events logging

✓ Power quality logging according to standard (EN 50160)

The grid is changing - how?

✓ New modules enter the grid

The grid is changing -how?

- ✓ New renewable modules enter the grid
- ✓ By 2050 technology will enable >80% renewables
- ✓ Renewables enable a Micro-grid: an autonomous grid

The grid is changing - how?

✓ Smart metering offers a lot of operational benefits for renewables. Benefits =cost saving

What can smart metering provide renewables #2nd solution

- if you are worried about and not from:
 Fraud detection, and technical/non-technical loss detection
- Diagnosis and Early detection of electric devices failures From outside the farm and in advance

IEC application
Behind the scenes

The grid is changing: harmonics

- ✓ Renewables insert converters. Converters are Harmonic Generating Loads (HGL-s)
- ✓ HGL-s may cause large inaccuracy at energy metering
 This should be properly designed and validated
- ✓ Conventional metrology standards does not sufficiently validate this phenomena written for conventional meter

Problem of accurate energy measurement with harmonics

Simple solution:

✓ Use meter designed according to IEEE 1459, or DIN 40110-1,3

Or:

√ validated at lab according to the standard

New requirements from metering systems that did not exist before

Measurement challenge due to entry of prosumer:

- Dynamic measurement range enlargement: Generation energy level (1-500MWatt) is much higher than consumption (100kWatt)
- ✓ Sensitivity to ultra low power gives rise to measurement quantum effects that disrupts energy metering
- ✓ 2nd harmonic problem: Renewable energy insert harmonics: conventional digital meters are not always sensitive to harmonics.

Solution:

Good quality meters are sensitive to larger dynamic range 1kWatt-500MWatt

✓ Good quality meters + designed according to IEEE 1459 or DIN 40110-1,3

Israel Electric
National meters
lab

Optimize your Renewable cost-benefit

#3rd + 4th benefits: optimization

you may receive as a result of metering:

✓ Load and price forecasting 30 days ahead

✓ Extending battery life – a key technology to E-storage and enabling micro-grid

Optimizing correctly

✓ Liberalized market: Optimization of selling electricity to the provider

New requirements from metering systems that did not exist before

Load profile - a new feature: accurate energy quarterly hourly measurement from prosumers

- ✓ <u>Problem:</u> meterology standards handle only bi-monthly billing registers
 - ✓ How to guarantee accurate measurement?

New requirements from metering systems that did not exist before energy balance

Large solar arrays. We want to perform both (1) quarter-hourly billing (2) an energy balance of separate fields/farms to the grid collected energy

How do we make sure that all meters are measuring 1) simultaneously 2) and accurately

Problem of energy balance using array of meters

Fig. 3. (a) relative view of two periods of two slightly miss-synchronized meters. Yellow rectangles represent actual time of two meters on simultaneous time. The dotted line represents a hidden assumption that both times are simultaneous. (b) A partially filled minimal quanta registered by meter.

Solution:

✓ synchronize all meters to a single source SNTP – Server Network Time Protocol <u>Either:</u>

PC simple computer or accurate clock server

Accurate synchronization of meters

New requirements from metering systems that did not exist before – correct functionality

- ✓ Besides accuracy there is issue of measurement correction: measurement that is suitable to a prosumer – producer/ consumer situation:
- ✓ Separation of active import/export energy consumption: Arithmetic measurement and not the traditional vector measurement
- √ Correct tariff measurement
- ✓ Electricity events logging

New requirements from metering systems that did not exist before

✓ Metering scope is much wider

Recommended Solution to all these problems is simple

Accuracy of measurement:

Paper on issue

- ✓ Use a meter that is designed in accordance with standard IEEE 1459, or DIN 40110-1, 3
- ✓ Or: validated at lab in accordance with these standards

Correction of measurement:

Paper on issue

✓ Use a meter that is certified logo according to standard DLMS/COSEM (IEC 62056)

Or:

PLC meters: prime+T5 or IDIS or G3 logos

Or go to a meters functional validation lab Specializing at these standards

Summary of benefits:

- √ 1st benefit: load and price hourly forecasting 30 days ahead
- ✓ 2nd benefit: technical/non technical loss detection
- √ 3rd benefit: optimization of E-storage lifespan and of selling renewable energy

